Supplementary Online Content di Giacomo E, Krausz M, Colmegna F, Aspesi F, Clerici M. Estimating the Risk of Attempted Suicide Among Sexual Minority Youths: A Systematic Review and Meta-analysis. *JAMA Pediatr*. Published online October 8, 2018. doi:10.1001/jamapediatrics.2018.2731 eBox. Definitions of Sexual Orientation eTable. Meta-regression **eFigure 1.** Funnel Plot of Attempted Suicide in Sexual Minority Adolescents Compared to Heterosexual Peers **eFigure 2.** Funnel Plot of Attempted Suicide in Each Group of Sexual Minority Adolescents Compared to Heterosexual Peers **eFigure 3.** Forest Plot of Attempted Suicide in Each Group of Sexual Minority Adolescents Compared With Heterosexual Peers **eFigure 4.** Forest Plot of Attempted Suicide in Sexual Minority Adolescents Compared to Heterosexual Peers According to the Country of Sampling **eFigure 5.** Forest Plot of Attempted Suicide in Sexual Minority Adolescents Compared to Heterosexual Peers According to the Grouping of Country of Sampling **eFigure 6.** Forest Plot of Attempted Suicide in Sexual Minority Adolescents Compared to Heterosexual Peers According to the Grouping of Year of Sampling This supplementary material has been provided by the authors to give readers additional information about their work. ## **eBox.** Definitions of Sexual Orientation - Homosexuality: An enduring pattern of emotional, romantic, and/or sexual attractions to people of the same sex. - Bisexuality: Romantic attraction, sexual attraction, or sexual behavior toward both males and females. - Transgender: People who have a gender identity or gender expression that differs from their assigned sex. Transgender people are sometimes called *transexual* if they desire medical assistance seeking hormone replacement and/or other sex reassignment therapies - Sexual minority: A group whose sexual identity, orientation, and/or practices differ from most of the surrounding society. 1 - Sexual orientation: An enduring pattern of romantic or sexual attraction (or a combination of them) to persons of the opposite sex or gender, the same sex or gender, or both sexes or more than one gender. According to the American Psychological Association, sexual orientation "also refers to a person's sense of identity based on those attractions and related behaviors."² - Adolescence: (from Latin *adolescere*, meaning "to grow up") A transitional stage of physical and psychological development that generally occurs during the period from puberty to legal age. - Attempted suicide: "A self-destructive act, deliberately carried out, where there is a clear expectation of death."² ## **eReferences** - 1. Math SB, Seshadri SP. The invisible ones: sexual minorities. *Indian J Med Res.* 2013;137(1):4-6. - 2. American Psychological Association. *Diagnostic and Statistical Manual of Mental Disorders*. 5th ed. Washington, DC: American Psychiatric Association; 2013. eTable 1. Meta-regression | Univariate Meta-Regression | | | |--|----------|----------------| | | р | R ² | | Country where the study has been conducted | <u> </u> | | | All the groups | .89 | .00 | | Homosexual | .30 | .04 | | Bisexual | .36 | .06 | | LGB | .21 | .25 | | Country grouping | | | | All the groups | .05 | .11 | | Homosexual | .73 | .01 | | Bisexual | .84 | .01 | | LGB | .89 | .01 | | The youngest age of the sample | - | | | All the groups | .64 | .01 | | Homosexual | .04 | .15 | | Bisexual | <.001 | .59 | | LGB | NA | NA | | The oldest age of the sample | | | | All the groups | .43 | .02 | | Homosexual | .79 | .00 | | Bisexual | .92 | .00 | | LGB | .30 | .18 | | Grouping Year of sampling | | | | All the groups | .09 | .09 | | Homosexual | .15 | .09 | | Bisexual | .02 | .33 | | LGB | .14 | .33 | | Multivariate Meta-Regression | | | | | р | R ² | | Country - Year grouping | | | | All the groups | .02 | .23 | | Homosexual | .07 | .22 | | Bisexual | .02 | .43 | | LGB | .17 | .51 | | Year grouping- Grouping Country | | | | All the groups | .10 | .14 | | Homosexual | .29 | .11 | | Bisexual | .07 | .33 | | LGB | .35 | .35 | | Country-Oldest | | | | All the groups | .73 | .02 | |---------------------------------|-------|-----| | Homosexual | .20 | .12 | | | р | R² | | Bisexual | .66 | .06 | | LGB | .19 | .49 | | Country-Youngest | | | | All the groups | .84 | .01 | | Homosexual | .12 | .16 | | Bisexual | <.001 | .62 | | LGB | NA | NA | | Grouping Country-Oldest | | | | All the groups | .05 | .17 | | Homosexual | .96 | .00 | | Bisexual | NA | NA | | LGB | .19 | .49 | | Grouping Country-Youngest | | | | All the groups | .06 | .16 | | Homosexual | .10 | .17 | | Bisexual | NA | NA | | LGB | NA | NA | | Year Grouping-Oldest | | | | All the groups | .17 | .11 | | Homosexual | .06 | .22 | | Bisexual | .07 | .33 | | LGB | .23 | .45 | | Year Grouping-Youngest | | | | All the groups | .02 | .17 | | Homosexual | .05 | .23 | | Bisexual | <.001 | .60 | | LGB | NA | NA | | Oldest-Youngest | | | | All the groups | .68 | .02 | | Homosexual | .13 | .15 | | Bisexual | <.001 | .59 | | LGB | NA | NA | | Country- Year grouping-Oldest | | | | All the groups | .03 | .18 | | Homosexual | .15 | .22 | | Bisexual | .07 | .43 | | LGB | .06 | .81 | | Country- Year grouping-Youngest | | | | All the groups | .03 | .18 | | Homosexual | .12 | .24 | | Bisexual | <.001 | .72 | |---|-------|-----| | LGB | NA | NA | | Country grouping- Year grouping- Oldest | | | | | р | R² | | All the groups | .09 | .20 | | Homosexual | .09 | .26 | | Bisexual | .16 | .34 | | LGB | .06 | .80 | | Country grouping- Year grouping- Youngest | | | | All the groups | .01 | .31 | | Homosexual | .08 | .27 | | Bisexual | <.001 | .60 | | LGB | NA | NA | | Country- Oldest- Youngest | | | | All the groups | .84 | .26 | | Homosexual | .08 | .27 | | Bisexual | <.001 | .62 | | LGB | NA | NA | | Country grouping- Youngest - Oldest | | | | All the groups | .04 | .23 | | Homosexual | .24 | .05 | | Bisexual | <.001 | .59 | | LGB | NA | NA | | Year grouping- Oldest- Youngest | | | | All the groups | .05 | .23 | | Homosexual | .21 | .18 | | Bisexual | <.001 | .60 | | LGB | NA | NA | | Country grouping- Year grouping-youngest - oldest | | | | All the groups | <.001 | .36 | | Homosexual | .14 | .28 | | Bisexual | .03 | .60 | | LGB | NA NA | NA | | Country- Year grouping-youngest - oldest | | | | All the groups | .01 | .29 | | Homosexual | .22 | .24 | | Bisexual | <.001 | .73 | | LGB | NA NA | NA | **eFigure 1.** Funnel plot of attempted suicide in sexual minority adolescents compared to heterosexual peers **eFigure 2.** Funnel plot of attempted suicide in each group of sexual minority adolescents compared to heterosexual peers **eFigure 3.** Forest plot of attempted suicide in each group of sexual minority adolescents compared with heterosexual peers | Study or Subgroup | Sexual Minori
Events | ty reen
Total | Heterosex
Events | | Weight M | Odds Ratio
M-H, Random, 95% CI | Odds Ratio
M-H, Random, 95% Cl | |---|---------------------------|-------------------------|---------------------|--------------|---------------------|--|---------------------------------------| | Homosexual Teens | | | | | 1.50/ | 0.0014.00.17.17 | | | Sagley&Trembley, 2000- Minnesota | 47 | 168 | 13 | 313 | 1.3% | 8.96 [4.68, 17.16] | | | Bostwick et al., 2014 | 1423 | 6243 | 4385 | 66446 | 2.4% | 4.18 [3.91, 4.47] | | | Cotter et al., 2014 | 6 | 33 | 85 | 1212 | 0.9% | 2.95 [1.18, 7.33] | | | Dong-Yun et al., 2016 | 609 | 1697 | 10057 | 127594 | 2.3% | 6.54 [5.91, 7.24] | | | Hatzenbuehler, 2011 | 59 | 301 | 1280 | 30439 | 2.0% | 5.55 [4.16, 7.42] | _ | | (ann et al., 2011 | 323 | 1640 | 8721 | 103821 | 2.3% | 2.67 [2.36, 3.03] | - | | anghinrichsen-Rohling et al., 2011 | 6 | 33 | 85 | 1212 | 0.9% | 2.95 [1.18, 7.33] | | | .ee et al., 2016 | 609 | 2306 | 10057 | 127594 | 2.3% | 4.19 [3.81, 4.61] | | | ucassen et al., 2011 | 10 | 73 | 291 | 7370 | 1.2% | 3.86 [1.96, 7.60] | | | Mustanski et al., 2010 | 11 | 151 | 9 | 246 | 0.9% | 2.07 [0.84, 5.12] | T - | | Peter et al., 2016 | 1178 | 5354 | 44796 | 874124 | 2.4% | 5.22 [4.89, 5.58] | · · | | Reisner et al., 2014 | 44 | 219 | 119 | 2912 | 1.8% | 5.90 [4.04, 8.61] | | | Saewyc et al., 2007-AI90 | 23 | 84 | 1269 | 6803 | 1.6% | 1.64 [1.01, 2.67] | | | Saewyc et al., 2007–BC03 | 1639 | 6799 | 14532 | 251876 | 2.4% | 5.19 [4.90, 5.50] | • | | Saewyc et al., 2007–BC92 | 1146 | 3599 | 15514 | 232221 | 2.4% | 6.53 [6.07, 7.01] | • | | Saewyc et al., 2007-BC98 | 996 | 4278 | 16215 | 270323 | 2.4% | 4.76 [4.42, 5.11] | · · · · · · · · · · · · · · · · · · · | | Saewyc et al., 2007-MAHS86 | 65 | 274 | 3002 | 26585 | 2.1% | 2.44 [1.84, 3.24] | _ | | Saewyc et al., 2007-MN92 | 169 | 848 | 4850 | 23230 | 2.2% | 0.94 [0.79, 1.12] | + | | Saewyc et al., 2007-MN98 | 315 | 989 | 3609 | 20047 | 2.3% | 2.13 [1.85, 2.45] | - | | Saewyc et al., 2007-SE95 | 29 | 165 | 484 | 7134 | 1.8% | 2.93 [1.94, 4.42] | _ | | Saewyc et al., 2007-SE99 | 46 | 180 | 467 | 7482 | 1.9% | 5.16 [3.64, 7.30] | - | | Seil et al., 2014 | 296 | 1028 | 575 | 7882 | 2.3% | 5.14 [4.38, 6.03] | - | | Stone et al., 2014 | 609 | 2763 | 2677 | 42343 | 2.3% | 4.19 [3.80, 4.62] | - | | Feasdale&Bradley-Engen, 2010 | 134 | 787 | 905 | 11911 | 2.2% | 2.50 [2.05, 3.04] | - | | Vang et al., 2012 | 2 | 64 | 43 | 2903 | 0.5% | 2.15 [0.51, 9.05] | | | Vichstrøm & Hegna, 2003 | 30 | 333 | 105 | 2924 | 1.7% | 2.66 [1.74, 4.06] | — | | Zhao et al., 2011 | 17 | 58 | 133 | 1624 | 1.4% | 4.65 [2.57, 8.41] | | | Subtotal (95% CI) | 1/ | 40467 | 133 | 2258571 | 50.1% | 3.70 [3.17, 4.32] | ▲ | | Fotal events | 0041 | .0.07 | 144270 | | 20.1/0 | J 0 [J.L/, 7.J2] | • | | | 9841
If - 26 (B < 0.00 | 001), 12 | 144278 | | | | | | Heterogeneity: Tau² = 0.13; Chi² = 821.52, d
Fest for overall effect: Z = 16.50 (P < 0.0000 | | (001); I ⁻ = | 3/70 | | | | | | Bisexual Teens | | | | | | | | | Bagley&Trembley, 2000– Minnesota | 34 | 166 | 13 | 212 | 1 20/ | 5 04 (3 04 11 63) | | | | | 166 | | 313 | 1.2% | 5.94 [3.04, 11.63] | | | Hatzenbuehler, 2011 | 245 | 1112 | 1280 | 30439 | 2.3% | 6.44 [5.53, 7.50] | ¯ | | Kann et al., 2011 | 1372 | 4604 | 8721 | 103821 | 2.4% | 4.63 [4.33, 4.95] | | | anghinrichsen-Rohling et al., 2011 | 38 | 167 | 85 | 1212 | 1.7% | 3.91 [2.56, 5.97] | | | ucassen et al., 2011 | 59 | 270 | 291 | 7370 | 2.0% | 6.80 [4.98, 9.29] | | | Mustanski et al., 2010 | 6 | 70 | 9 | 246 | 0.7% | 2.47 [0.85, 7.19] | T - | | Peter et al., 2016 | 5027 | 18410 | 44796 | 874124 | 2.4% | 6.95 [6.72, 7.19] | | | Saewyc et al., 2007-AI90 | 23 | 117 | 1269 | 6803 | 1.7% | 1.07 [0.67, 1.69] | | | Saewyc et al., 2007–BC03 | 1357 | 6457 | 14532 | 251876 | 2.4% | 4.35 [4.08, 4.62] | * | | Saewyc et al., 2007–BC92 | 560 | 3583 | 15514 | 232221 | 2.3% | 2.59 [2.36, 2.84] | | | Saewyc et al., 2007-BC98 | 909 | 4082 | 16215 | 270323 | 2.4% | 4.49 [4.16, 4.84] | · · | | Saewyc et al., 2007-MAHS86 | 65 | 269 | 3002 | 26585 | 2.0% | 2.50 [1.89, 3.32] | - | | Saewyc et al., 2007-MN92 | 297 | 900 | 4850 | 23230 | 2.3% | 1.87 [1.62, 2.15] | | | Saewyc et al., 2007-MN98 | 373 | 993 | 3609 | 20047 | 2.3% | 2.74 [2.40, 3.13] | - | | Saewyc et al., 2007-SE95 | 29 | 132 | 484 | 7134 | 1.7% | 3.87 [2.54, 5.90] | | | Saewyc et al., 2007-SE99 | 46 | 132 | 467 | 7482 | 1.9% | 8.03 [5.55, 11.63] | - | | Zhao et al., 2011 | 15 | 115 | 133 | 1624 | 1.4% | 1.68 [0.95, 2.98] | | | Subtotal (95% CI) | | 41579 | | 1864850 | 33.1% | 3.69 [2.96, 4.61] | • | | Total events | 10455 | | 115270 | | | | | | Heterogeneity: Tau² = 0.19; Chi² = 980.02, d
Fest for overall effect: Z = 11.56 (P < 0.0000 | | 001); I ² = | 98% | | | | | | | - | | | | | | | | Transgender Teens | 10 | 0.5 | 215 | 7710 | 1 50/ | 5.87 [3.51, 9.82] | | | Clark et al., 2014
Subtotal (95% CI) | 19 | 95
95 | 315 | 7710
7710 | 1.5%
1.5% | 5.87 [3.51, 9.82]
5.87 [3.51, 9.82] | | | | 10 | 93 | 21- | ,,10 | 1.370 | 3.07 [3.31, 3.02] | | | Fotal events | 19 | | 315 | | | | | | Heterogeneity: Not applicable
Fest for overall effect: Z = 6.73 (P < 0.00001 | .) | | | | | | | | LGB teens | | | | | | | | | | F0 | 120 | 165 | 2625 | 1 00/ | 11 04 [7 61 16 61] | | | Arnarsson et al., 2015 | 59 | 139 | 165 | 2635 | 1.9% | 11.04 [7.61, 16.01] | - | | Bagley&Trembley, 2000- Massachussets '95 | 50 | 128 | 366 | 3237 | 1.9% | 5.03 [3.47, 7.29] | - | | Bagley&Trembley, 2000 - Massachussets'93 | 29 | 105 | 209 | 1563 | 1.7% | 2.47 [1.57, 3.88] | | | Bagley&Trembley, 2000 - Seattle | 68 | 331 | 479 | 7145 | 2.0% | 3.60 [2.71, 4.77] | - | | Duncan et Hatzenbuehler, 2014 | 17 | 102 | 26 | 1071 | 1.3% | 8.04 [4.20, 15.40] | | | Eisenberg & Resnick, 2006 | 811 | 2255 | 3694 | 19672 | 2.3% | 2.43 [2.21, 2.67] | - | | ian et al., 2015 | 29 | 664 | 182 | 8304 | 1.8% | 2.04 [1.37, 3.04] | | | /RBS, 2015 | 6160 | 22686 | 13562 | 196574 | 2.4% | 5.03 [4.86, 5.20] | ' | | Subtotal (95% CI) | | 26410 | | 240201 | 15.2% | 4.13 [2.88, 5.94] | ◆ | | Total events | 7223
If = 7 (P < 0.000 | 101)· I² = 0 | 18683 | | | | | | leterogeneity: Tau2 - 0.24: Chi2 - 250 04 | | ю <i>т</i> , г = 9 | , 70 | | | | | | Heterogeneity: $Tau^2 = 0.24$; $Chi^2 = 258.94$, d
Test for overall effect: $Z = 7.68$ ($P < 0.00001$ | .) | | | | | | | | Test for overall effect: Z = 7.68 (P < 0.00001 | .) | 108551 | | 4371332 | 100.0% | 3,79 [3.40. 4.23] | | | Fest for overall effect: Z = 7.68 (P < 0.00001
Fotal (95% CI) | , | 108551 | 279546 | 4371332 | 100.0% | 3.79 [3.40, 4.23] | • | | Test for overall effect: Z = 7.68 (P < 0.00001 | 27538 | | 278546 | 4371332 | 100.0% | 3.79 [3.40, 4.23] | 0.01 0.1 1 10 | AI, National American Indian Adolescent Health Survey; BC, British Columbia Adolescent Health Survey; LGB, lesbian, gay, bisexual; MAHS, Minnesota Adolescent Health Survey; M-H, Mantel-Haenszel; MN, Minnesota Student Survey; NR, not reported; SE, Seattle Adolescent Health Survey; YRBS, Youth Risk Behavior Surveillance System. **eFigure 4.** Forest plot of attempted suicide in sexual minority adolescents compared to heterosexual peers according to the country of sampling | tudy or Subgroup | Sexual Minor
Events | ity Teen
Total | Heterosex
Events | | Weight | Odds Ratio
M-H, Random, 95% CI | Odds Ratio
M-H, Random, 95% CI | |---|------------------------|--------------------------|---------------------|-------------------------|----------------------|--|-----------------------------------| | USA
agley&Trembley, 2000– Massachussets '95 | 50 | 128 | 366 | 3237 | 2.8% | 5.03 [3.47, 7.29] | | | agley&Trembley, 2000- Massachussets'93 | 29 | 105 | 209 | 1563 | 2.6% | 2.47 [1.57, 3.88] | | | agley&Trembley, 2000– Minnesota
agley&Trembley, 2000– Seattle | 81
68 | 334
331 | 13
479 | 313
7145 | 2.3%
3.0% | 7.39 [4.02, 13.58]
3.60 [2.71, 4.77] | | | ostwick et al., 2014 | 1423 | 6243 | 4385 | 66446 | 3.3% | 4.18 [3.91, 4.47] | - | | uncan et Hatzenbuehler, 2014 | 17 | 102 | 26 | 1071 | 2.2% | 8.04 [4.20, 15.40] | | | senberg & Resnick, 2006
atzenbuehler, 2011 | 811
304 | 2255
1413 | 3694
1280 | 19672
30439 | 3.3%
3.2% | 2.43 [2.21, 2.67]
6.24 [5.44, 7.17] | | | ann et al., 2011 | 1695 | 6244 | 8721 | 103821 | 3.3% | 4.06 [3.83, 4.31] | ÷ | | inghinrichsen-Rohling et al., 2011 | 38 | 167 | 85 | 1212 | 2.7% | 3.91 [2.56, 5.97] | - | | eisner et al., 2014
eil et al., 2014 | 44
296 | 219
1028 | 119
575 | 2912
7882 | 2.8%
3.2% | 5.90 [4.04, 8.61]
5.14 [4.38, 6.03] | | | one et al., 2014 | 609 | 2763 | 2677 | 42343 | 3.3% | 4.19 [3.80, 4.62] | - | | easdale&Bradley-Engen, 2010 | 134 | 787 | 905 | 11911 | 3.1% | 2.50 [2.05, 3.04] | - | | RBS, 2015
ubtotal (95% CI) | 6160 | 22686
44805 | 13562 | 196574
496541 | 3.3%
44.3% | 5.03 [4.86, 5.20]
4.22 [3.65, 4.87] | • | | otal events
eterogeneity: Tau² = 0.06; Chi² = 302.90, di | | | 37096
95% | | | | | | est for overall effect: $Z = 19.65 (P < 0.0000)$ Canada | 1) | | | | | | | | ustanski et al., 2010 | 17 | 221 | 9 | 246 | 1.8% | 2.19 [0.96, 5.03] | - | | eter et al., 2016 | 6205 | 23764 | 44796 | 874214 | 3.3% | 6.54 [6.35, 6.75] | • | | hao et al., 2011
ubtotal (95% CI) | 32 | 173
24158 | 133 | 1624
876084 | 2.7%
7.8% | 2.54 [1.67, 3.88]
3.51 [1.57, 7.84] | | | otal events | 6254 | | 44938 | 0,000, | 11070 | 5.52 (2.57, 7.6.7) | | | eterogeneity: $Tau^2 = 0.44$; $Chi^2 = 25.73$, df
est for overall effect: $Z = 3.06$ (P = 0.002) | = 2 (P < 0.000 | 01); I ² = 92 | % | | | | | | New Zealand
lark et al., 2014 | 19 | 95 | 315 | 7710 | 2.5% | 5.87 [3.51, 9.82] | | | icassen et al., 2011 | 69 | 143 | 291 | 7370 | 2.9% | 22.68 [16.01, 32.13] | | | ubtotal (95% CI) | 0.0 | 238 | 606 | 15080 | 5.3% | 11.70 [3.09, 44.25] | | | otal events
eterogeneity: $Tau^2 = 0.87$; $Chi^2 = 18.31$, df
est for overall effect: $Z = 3.62$ (P = 0.0003) | 88
= 1 (P < 0.000 | 1); I ² = 95% | 606 | | | | | | Korea
ee et al., 2016 | 609 | 2306 | 10057 | 127594 | 3.3% | 4.19 [3.81, 4.61] | _ | | ubtotal (95% CI) | | 2306 | | 127594 | 3.3% | 4.19 [3.81, 4.61] | • | | otal events | 609 | | 10057 | | | | | | eterogeneity: Not applicable
est for overall effect: Z = 29.64 (P < 0.0000) | 1) | | | | | | | | China & Taiwan
an et al., 2015 | 29 | 664 | 182 | 8304 | 2.8% | 2.04 [1.37, 3.04] | | | ubtotal (95% CI) | | 664 | | 8304 | 2.8% | 2.04 [1.37, 3.04] | • | | otal events
eterogeneity: Not applicable
est for overall effect: Z = 3.49 (P = 0.0005) | 29 | | 182 | | | | | | USA & Canada | | | | | | | | | aewyc et al., 2007–Al90
aewyc et al., 2007–BC03 | 46
2996 | 6916
13256 | 1269
14532 | 6803
251876 | 3.0%
3.3% | 0.03 [0.02, 0.04]
4.77 [4.56, 4.98] | 1 | | aewyc et al., 2007–BC03 | 1706 | 7182 | 15514 | 232221 | 3.3% | 4.35 [4.11, 4.61] | ÷ | | aewyc et al., 2007-BC98 | 1905 | 8360 | 16215 | 270323 | 3.3% | 4.62 [4.38, 4.88] | - | | aewyc et al., 2007-MAHS86 | 130 | 543 | 3002 | 26585 | 3.1% | 2.47 [2.02, 3.02] | | | aewyc et al., 2007–MN92
aewyc et al., 2007–MN98 | 466
688 | 1748
1982 | 4850
3609 | 23230
20047 | 3.3%
3.3% | 1.38 [1.23, 1.54]
2.42 [2.19, 2.67] | | | aewyc et al., 2007–MN98 | 58 | 297 | 484 | 7134 | 3.0% | 3.33 [2.47, 4.51] | | | aewyc et al., 2007-SE99 | 138 | 444 | 467 | 7482 | 3.1% | 6.77 [5.43, 8.46] | | | ubtotal (95% CI)
otal events | 8133 | 40728 | 59942 | 845701 | 28.6% | 2.03 [1.26, 3.27] | | | eterogeneity: $Tau^2 = 0.52$; $Chi^2 = 2166.45$, of est for overall effect: $Z = 2.92$ ($P = 0.004$) | df = 8 (P < 0.0) | 0001); I ² = | 100% | | | | | | Iceland | 2.7 | 120 | 105 | 2625 | 3 70/ | E NO 10 61 0 101 | _ | | rnarsson et al., 2015
ubtotal (95% CI) | 37 | 139
139 | 165 | 2635
2635 | 2.7%
2.7% | 5.43 [3.61, 8.16]
5.43 [3.61, 8.16] | | | otal events | 37 | | 165 | | | , | | | eterogeneity: Not applicable est for overall effect: $Z = 8.13$ (P < 0.00001) | | | | | | | | | Ireland
otter et al., 2014 | 6 | 33 | 85 | 1212 | 1.6% | 2.95 [1.18, 7.33] | | | ubtotal (95% CI) | | 33 | | 1212 | 1.6% | 2.95 [1.18, 7.33] | | | otal events
eterogeneity: Not applicable
est for overall effect: Z = 2.32 (P = 0.02) | 6 | | 85 | | | | | | Switzerland | | | | | | | | | ang et al., 2012 | 2 | 64 | 43 | 2903 | 0.9% | 2.15 [0.51, 9.05] | | | ubtotal (95% CI)
otal events | 2 | 64 | 43 | 2903 | 0.9% | 2.15 [0.51, 9.05] | | | eterogeneity: Not applicable
est for overall effect: Z = 1.04 (P = 0.30) | 2 | | 43 | | | | | | Norway | | | | | | n cotto - to to | | | /ichstrøm & Hegna, 2003
ubtotal (95% CI) | 30 | 333
333 | 105 | 2924
2924 | 2.7%
2.7% | 2.66 [1.74, 4.06]
2.66 [1.74, 4.06] | | | otal events | 30 | ,,, | 105 | 2324 | 2.7/0 | 2.00 [1.74, 4.00] | | | eterogeneity: Not applicable
est for overall effect: Z = 4.53 (P < 0.00001) | | | | | | | | | | | | | | | | _ | | otal (95% CI) | | 113468 | | 2378978 | 100.0% | 3.50 [2.97, 4.12] | • | | otal (95% CI) otal events leterogeneity: Tau ² = 0.21; Chi ² = 3074.36, i | 26947 | | 153219 | 2378978 | 100.0% | 3.50 [2.97, 4.12] | • | **eFigure 5.** Forest plot of attempted suicide in sexual minority adolescents compared to heterosexual peers according to the grouping of country of sampling | Study or Subgroup | Sexual Minori
Events | ty Teen
Total | Heterosex
Events | | Weight | Odds Ratio
M-H, Random, 95% CI | Odds Ratio
M–H, Random, 95% CI | |--|--------------------------------|--------------------------|---------------------|---------|---------|---|--| | North America & Canada | | | | | | , | | | Bagley&Trembley, 2000- Massachussets '95 | 50 | 128 | 366 | 3237 | 2.8% | 5.03 [3.47, 7.29] | | | Bagley&Trembley, 2000- Massachussets'93 | 29 | 105 | 209 | 1563 | 2.6% | 2.47 [1.57, 3.88] | | | Bagley&Trembley, 2000- Minnesota | 81 | 334 | 13 | 313 | 2.3% | 7.39 [4.02, 13.58] | | | Bagley&Trembley, 2000- Seattle | 68 | 331 | 479 | 7145 | 3.0% | 3.60 [2.71, 4.77] | | | Bostwick et al., 2014 | 1423 | 6243 | 4385 | 66446 | 3.3% | 4.18 [3.91, 4.47] | - | | Duncan et Hatzenbuehler, 2014 | 17 | 102 | 26 | 1071 | 2.2% | 8.04 [4.20, 15.40] | | | Eisenberg & Resnick, 2006 | 811 | 2255 | 3694 | 19672 | 3.3% | 2.43 [2.21, 2.67] | - | | Hatzenbuehler, 2011 | 304 | 1413 | 1280 | 30439 | 3.2% | 6.24 [5.44, 7.17] | _ | | Kann et al., 2011 | 1695 | 6244 | 8721 | 103821 | 3.3% | 4.06 [3.83, 4.31] | - | | Langhinrichsen-Rohling et al., 2011 | 38 | 167 | 85 | 1212 | 2.7% | 3.91 [2.56, 5.97] | | | Mustanski et al., 2010 | 17 | 221 | 9 | 246 | 1.8% | 2.19 [0.96, 5.03] | - | | Peter et al., 2016 | 6205 | 23764 | 44796 | 874214 | 3.3% | 6.54 [6.35, 6.75] | • | | Reisner et al., 2014 | 44 | 219 | 119 | 2912 | 2.8% | 5.90 [4.04, 8.61] | | | Saewyc et al., 2007-AI90 | 46 | 6916 | 1269 | 6803 | 3.0% | 0.03 [0.02, 0.04] | • | | Saewyc et al., 2007-BC03 | 2996 | 13256 | 14532 | 251876 | 3.3% | 4.77 [4.56, 4.98] | - | | Saewyc et al., 2007-BC92 | 1706 | 7182 | 15514 | 232221 | 3.3% | 4.35 [4.11, 4.61] | → | | Saewyc et al., 2007-BC98 | 1905 | 8360 | 16215 | 270323 | 3.3% | 4.62 [4.38, 4.88] | · · | | Saewyc et al., 2007-MAHS86 | 130 | 543 | 3002 | 26585 | 3.1% | 2.47 [2.02, 3.02] | | | Saewyc et al., 2007-MN92 | 466 | 1748 | 4850 | 23230 | 3.3% | 1.38 [1.23, 1.54] | - | | Saewyc et al., 2007-MN98 | 688 | 1982 | 3609 | 20047 | 3.3% | 2.42 [2.19, 2.67] | - | | Saewyc et al., 2007-SE95 | 58 | 297 | 484 | 7134 | 3.0% | 3.33 [2.47, 4.51] | | | Saewyc et al., 2007-SE99 | 138 | 444 | 467 | 7482 | 3.1% | 6.77 [5.43, 8.46] | | | Seil et al., 2014 | 296 | 1028 | 575 | 7882 | 3.2% | 5.14 [4.38, 6.03] | | | Stone et al., 2014 | 609 | 2763 | 2677 | 42343 | 3.3% | 4.19 [3.80, 4.62] | - | | Teasdale&Bradley-Engen, 2010 | 134 | 787 | 905 | 11911 | 3.1% | 2.50 [2.05, 3.04] | | | YRBS, 2015 | 6160 | 22686 | 13562 | 196574 | 3.3% | 5.03 [4.86, 5.20] | • | | Zhao et al., 2011 | 32 | 173 | 133 | 1624 | 2.7% | 2.54 [1.67, 3.88] | | | Subtotal (95% CI) | | 109691 | | 2218326 | 80.7% | 3.27 [2.73, 3.92] | • | | Total events | 26146 | | 141976 | | | | | | Test for overall effect: Z = 12.79 (P < 0.0000
New Zealand |)1) | | | | | | | | Clark et al., 2014 | 19 | 95 | 315 | 7710 | 2.5% | 5.87 [3.51, 9.82] | | | Lucassen et al., 2011 | 69 | 143 | 291 | 7370 | 2.9% | 22.68 [16.01, 32.13] | | | Subtotal (95% CI) | | 238 | | 15080 | 5.3% | 11.70 [3.09, 44.25] | | | Total events | 88 | | 606 | | | | | | Heterogeneity: $Tau^2 = 0.87$; $Chi^2 = 18.31$, df
Test for overall effect: $Z = 3.62$ (P = 0.0003) | | l); I ² = 95% | 5 | | | | | | Asia | | | | | | | | | Lee et al., 2016 | 609 | 2306 | 10057 | 127594 | 3.3% | 4.19 [3.81, 4.61] | - | | Lian et al., 2015 | 29 | 664 | 182 | 8304 | 2.8% | 2.04 [1.37, 3.04] | | | Subtotal (95% CI) | | 2970 | | 135898 | 6.0% | 3.00 [1.48, 6.09] | | | Total events | 638 | | 10239 | | | | | | Heterogeneity: $Tau^2 = 0.24$; $Chi^2 = 11.87$, df
Test for overall effect: $Z = 3.05$ (P = 0.002) | | 5); $I^2 = 92\%$ | | | | | | | North Europe | | | | | | | | | Arnarsson et al., 2015 | 37 | 139 | 165 | 2635 | 2.7% | 5.43 [3.61, 8.16] | | | Wichstrøm & Hegna, 2003 | 30 | 333 | 105 | 2924 | 2.7% | 2.66 [1.74, 4.06] | | | Subtotal (95% CI) | 50 | 472 | 100 | 5559 | 5.4% | 3.81 [1.88, 7.69] | | | Total events | 67 | | 270 | | | ,, | | | Heterogeneity: $Tau^2 = 0.21$; $Chi^2 = 5.73$, $df = 0.21$; $Chi^2 = 0.0002$) | $= 1 (P = 0.02); I^2$ | = 83% | 270 | | | | | | Europe | | | | | | | | | Cotter et al., 2014 | 6 | 33 | 85 | 1212 | 1.6% | 2.95 [1.18, 7.33] | | | Wang et al., 2012 | 2 | 64 | 43 | 2903 | 0.9% | 2.95 [1.18, 7.33] | | | Subtotal (95% CI) | 2 | 97 | 43 | 4115 | 2.5% | 2.69 [1.25, 5.81] | · | | Total events | Ω | 3, | 128 | 4113 | 2.5/0 | 2.05 [1.25, 5.01] | | | Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.13$, $df = 0.13$; $Chi^2 | = 1 (P = 0.72); I ² | = 0% | 128 | | | | | | Total (95% CI) | | 113468 | | 2378978 | 100.0% | 3.50 [2.97, 4.12] | • | | Total events | 26947 | 113400 | 153219 | 23,0370 | 100.076 | 3.30 [2.37, 7.12] | _ | | Heterogeneity: $Tau^2 = 0.21$; $Chi^2 = 3074.36$, | | 000011-12 | | | | | | | Test for overall effect: $Z = 15.13$ (P < 0.0000 Test for subgroup differences: $Chi^2 = 3.98$, of |)1) | | - 33/0 | | | | 0.1 0.2 0.5 1 2 5 Favours [sexual minority] Favours [heterosexual] | **eFigure 6.** Forest plot of attempted suicide in sexual minority adolescents compared to heterosexual peers according to the grouping of year of sampling ^a | tudy or Subgroup | Sexual Minor
Events | ity Teen
Total | Heterosex
Events | | Weight | Odds Ratio
M-H, Random, 95% Cl | Odds Ratio
M-H, Random, 95% CI | |--|--|--------------------------------------|---------------------------|---------------------|---------------------|--|--| | '90
agley&Trembley, 2000– Massachussets '95 | 50 | 128 | 366 | 3237 | 2.4% | 5.03 [3.47, 7.29] | | | agley&Trembley, 2000- Massachussets 95
agley&Trembley, 2000- Massachussets'93 | 30
29 | 105 | 209 | 1563 | 2.4% | 2.47 [1.57, 3.88] | | | agley&Trembley, 2000- Massachussets 93 | 81 | 334 | 13 | 313 | 1.8% | 7.39 [4.02, 13.58] | | | | 68 | | 479 | | 2.6% | | | | agley&Trembley, 2000- Seattle | | 331 | | 7145 | | 3.60 [2.71, 4.77] | | | eter et al., 2016 | 6205 | 23764 | 44796 | 874214 | 2.9% | 6.54 [6.35, 6.75] | · | | aewyc et al., 2007-AI90 | 46 | 6916 | 1269 | 6803 | 2.5% | 0.03 [0.02, 0.04] | 1 | | newyc et al., 2007-BC92 | 1706 | 7182 | 15514 | 232221 | 2.9% | 4.35 [4.11, 4.61] | T | | ewyc et al., 2007-BC98 | 1905 | 8360 | 16215 | 270323 | 2.9% | 4.62 [4.38, 4.88] | | | ewyc et al., 2007-MAHS86 | 130 | 543 | 3002 | 26585 | 2.7% | 2.47 [2.02, 3.02] | | | ewyc et al., 2007-MN92 | 466 | 1748 | 4850 | 23230 | 2.9% | 1.38 [1.23, 1.54] | - | | ewyc et al., 2007-MN98 | 688 | 1982 | 3609 | 20047 | 2.9% | 2.42 [2.19, 2.67] | - | | ewyc et al., 2007-SE95 | 58 | 297 | 484 | 7134 | 2.5% | 3.33 [2.47, 4.51] | | | ewyc et al., 2007-SE99 | 138 | 444 | 467 | 7482 | 2.7% | 6.77 [5.43, 8.46] | _ | | easdale&Bradley-Engen, 2010 | 134 | 787 | 905 | 11911 | 2.7% | 2.50 [2.05, 3.04] | | | ibtotal (95% CI) | 134 | 52921 | 303 | 1492208 | 36.6% | 2.57 [1.72, 3.85] | | | otal events | 11704 | JEJEI | 92178 | 1132200 | 30.070 | 2.57 [1.72, 5.05] | | | | | | | | | | | | eterogeneity: $Tau^2 = 0.57$; $Chi^2 = 2981.91$, est for overall effect: $Z = 4.60$ (P < 0.00001 | |)0001); I* = | = 100% | | | | | | 2000-2005 | | | | | | | | | ark et al 2014 | 19 | 95 | 315 | 7710 | 2.0% | 5.87 [3.51, 9.82] | | | senberg & Resnick, 2006 | 811 | 2255 | 3694 | 19672 | 2.9% | 2.43 [2.21, 2.67] | - | | ann et al., 2011 | 1695 | 6244 | 8721 | 103821 | 2.9% | 4.06 [3.83, 4.31] | | | newyc et al., 2011 | 2996 | 13256 | 14532 | 251876 | 2.9% | 4.77 [4.56, 4.98] | | | | 609 | 2763 | 2677 | 42343 | 2.9% | 4.19 [3.80, 4.62] | | | one et al., 2014 | 000 | =. 00 | | | =.5/0 | | | | ang et al., 2012 | 2 | 64 | 43 | 2903 | 0.6% | 2.15 [0.51, 9.05] | | | nao et al., 2011 | 32 | 173 | 133 | 1624 | 2.2% | 2.54 [1.67, 3.88] | | | ubtotal (95% CI) | | 24850 | | 429949 | 16.5% | 3.70 [2.96, 4.63] | → | | otal events | 6164 | | 30115 | | | | | | eterogeneity: $Tau^2 = 0.07$; $Chi^2 = 175.70$, d | | $(0.01); I^2 = 9$ | 7% | | | | | | est for overall effect: $Z = 11.46 (P < 0.0000)$ | -1) | | | | | | | | 2005-2010 | | | | | | | | | narsson et al., 2015 | 37 | 139 | 165 | 2635 | 2.3% | 5.43 [3.61, 8.16] | | | ostwick et al., 2014 | 1423 | 6243 | 4385 | 66446 | 2.9% | 4.18 [3.91, 4.47] | _ | | | | | | | | | | | uncan et Hatzenbuehler, 2014 | 17 | 102 | 26 | 1071 | 1.7% | 8.04 [4.20, 15.40] | | | atzenbuehler, 2011 | 304 | 1413 | 1280 | 30439 | 2.8% | 6.24 [5.44, 7.17] | _ | | ann et al., 2011 | 1695 | 6244 | 8721 | 103821 | 2.9% | 4.06 [3.83, 4.31] | | | ee et al., 2016 | 609 | 2306 | 10057 | 127594 | 2.9% | 4.19 [3.81, 4.61] | _ | | an et al., 2015 | 29 | 664 | 182 | 8304 | 2.3% | 2.04 [1.37, 3.04] | | | ıcassen et al., 2011 | 69 | 143 | 291 | 7370 | 2.4% | 22.68 [16.01, 32.13] | | | lustanski et al., 2010 | 17 | 221 | 9 | 255 | 1.4% | 2.28 [0.99, 5.22] | | | eter et al., 2016 | 6205 | 23764 | 44796 | 874214 | 2.9% | 6.54 [6.35, 6.75] | | | eisner et al., 2014 | 44 | 23704 | 119 | 2912 | 2.4% | 5.90 [4.04, 8.61] | | | | | | | | | | | | eil et al., 2014 | 296 | 1028 | 575 | 7882 | 2.8% | 5.14 [4.38, 6.03] | _ | | one et al., 2014 | 609 | 2763 | 2677 | 42343 | 2.9% | 4.19 [3.80, 4.62] | | | ıbtotal (95% CI) | | 45249 | | 1275286 | 32.5% | 5.20 [4.32, 6.26] | ◆ | | otal events | 11354 | | 73283 | | | | | | eterogeneity: $Tau^2 = 0.09$; $Chi^2 = 450.96$, dest for overall effect: $Z = 17.50$ (P < 0.0000) | |)001); I ² = | 97% | | | | | | after 2010 | | | | | | | | | ee et al., 2016 | 609 | 2306 | 10057 | 127594 | 2.9% | 4.19 [3.81, 4.61] | | | | | | | | | | | | ter et al., 2016 | 6205 | 23764 | 44796 | 874214 | 2.9% | 6.54 [6.35, 6.75] | | | ichstrøm & Hegna, 2003 | 30 | 333 | 105 | 2924 | 2.2% | 2.66 [1.74, 4.06] | | | | 6160 | 22686 | 13562 | 196574 | 2.9% | 5.03 [4.86, 5.20] | | | RBS, 2015 | | 49089 | | 1201306 | 11.0% | 4.72 [3.80, 5.87] | ★ | | RBS, 2015 | | .5005 | | | | | | | RBS, 2015
ubtotal (95% CI) | 13004 | .5005 | 68520 | | | | I I | | RBS, 2015
ubtotal (95% CI)
otal events
eterogeneity: Tau ² = 0.04; Chi ² = 185.32, d | 13004
df = 3 (P < 0.000 | | | | | | | | R8S, 2015
lbtotal (95% CI)
stal events
sterogeneity: Tau ² = 0.04; Chi ² = 185.32, d
st for overall effect: Z = 13.96 (P < 0.0000 | 13004
df = 3 (P < 0.000 | | | | | | | | RBS, 2015
ubtotal (95% CI) total events eterogeneity: Tau ² = 0.04; Chi ² = 185.32, dest for overall effect: Z = 13.96 (P < 0.0000) NR | 13004
df = 3 (P < 0.000
01) | 001); I ² = 9 | 18% | 1212 | 1 2% | 2.95 [1 18 7 22] | | | RBS, 2015 ubtotal (95% Cl) otal events eterogeneity: Tau ² = 0.04; Chi ² = 185.32, dest for overall effect: Z = 13.96 (P < 0.0000 NR otter et al., 2014 | 13004
df = 3 (P < 0.000
df) | 001); I ² = 9 | 8% | 1212 | 1.2% | 2.95 [1.18, 7.33]
3 91 [2.56, 5.97] | | | R8S, 2015
ubtotal (95% CI)
stal events
eterogeneity: $Tau^2 = 0.04$; $Chi^2 = 185.32$, $distributes$
est for overall effect: $Z = 13.96$ (P < 0.0000
NR
butter et al., 2014
anghinrichsen-Rohling et al., 2011 | 13004
df = 3 (P < 0.000
01) | 33
167 | 18% | 1212 | 2.2% | 3.91 [2.56, 5.97] | | | RBS, 2015 bbtotal (95% CI) tal events eterogeneity: Tau ² = 0.04; Chi ² = 185.32, d est for overall effect: Z = 13.96 (P < 0.0000 NR NR btotal (95% CI) bbtotal (95% CI) | 13004
df = 3 (P < 0.000
d1) | 001); I ² = 9 | 8%
85
85 | | | | | | R8S, 2015 ubtotal (95% CI) stal events eterogeneity: Tau² = 0.04; Chi² = 185.32, dest for overall effect: Z = 13.96 (P < 0.0000 NR otter et al., 2014 inghinrichsen-Rohling et al., 2011 ubtotal (95% CI) stal events eterogeneity: Tau² = 0.00; Chi² = 0.30, df = | 13004 If = 3 (P < 0.000) 6 38 $= 1 (P = 0.58); I^{2}$ | 33
167
200 | 8% | 1212 | 2.2% | 3.91 [2.56, 5.97] | | | R8S, 2015 ubtotal (95% CI) stal events eterogeneity: Tau² = 0.04; Chi² = 185.32, dest for overall effect: Z = 13.96 (P < 0.0000 NR otter et al., 2014 inghinrichsen-Rohling et al., 2011 ubtotal (95% CI) stal events eterogeneity: Tau² = 0.00; Chi² = 0.30, df = | 13004 If = 3 (P < 0.000) 6 38 $= 1 (P = 0.58); I^{2}$ | 33
167
200 | 8%
85
85 | 1212 | 2.2% | 3.91 [2.56, 5.97] | | | RBS, 2015 ubtotal (95% CI) btal events eterogeneity: Tau² = 0.04; Chi² = 185.32, dest for overall effect: Z = 13.96 (P < 0.0000 NR otter et al., 2014 anghinrichsen-Rohling et al., 2011 ubtotal (95% CI) btal events eterogeneity: Tau² = 0.00; Chi² = 0.30, df est for overall effect: Z = 6.70 (P < 0.00001 | 13004 If = 3 (P < 0.000) 6 38 $= 1 (P = 0.58); I^{2}$ | 33
167
200 | 8%
85
85 | 1212 | 2.2%
3.5% | 3.91 [2.56, 5.97] | - | | RRS, 2015 ubtotal (95% CI) otal events eterogeneity: Tau² = 0.04; Chi² = 185.32, dest for overall effect: Z = 13.96 (P < 0.0000 NR otter et al., 2014 anghinrichsen-Rohling et al., 2011 ubtotal (95% CI) otal events eterogeneity: Tau² = 0.00; Chi² = 0.30, df = est for overall effect: Z = 6.70 (P < 0.00001 otal (95% CI) | 13004
if = 3 (P < 0.000
11)
6
38
44
= 1 (P = 0.58); 1 ² | 33
167
200 | 85
85
170 | 1212
2424 | 2.2%
3.5% | 3.91 [2.56, 5.97]
3.72 [2.53, 5.46] | • | | RBS, 2015 ubtotal (95% CI) total events eterogeneity: Tau² = 0.04; Chi² = 185.32, dest for overall effect: Z = 13.96 (P < 0.0000 NR otto | 13004
If = 3 (P < 0.000
11) 6 38 44 = 1 (P = 0.58); 1 ² | 33
167
200
2 = 0%
172309 | 85
85
170
264266 | 1212
2424 | 2.2%
3.5% | 3.91 [2.56, 5.97]
3.72 [2.53, 5.46] | • | | RBS, 2015 ubtotal (95% CI) total events eterogeneity: Tau² = 0.04; Chi² = 185.32, dest for overall effect: Z = 13.96 (P < 0.0000 NR otter et al., 2014 anghinrichsen-Rohling et al., 2011 ubtotal (95% CI) otal events eterogeneity: Tau² = 0.00; Chi² = 0.30, df = est for overall effect: Z = 6.70 (P < 0.00001) otal (95% CI) | 13004
If = 3 (P < 0.000
11) 6 38 44 = 1 (P = 0.58); I ² 42270 df = 39 (P < 0.000) | 33
167
200
2 = 0%
172309 | 85
85
170
264266 | 1212
2424 | 2.2%
3.5% | 3.91 [2.56, 5.97]
3.72 [2.53, 5.46] | 0.1 0.2 0.5 1 2 5 Favours [sexual minority] Favours [heterosexual] |